Разрешение оригинала измеряется в. Графическая информация и средства ее обработки. Пиксели, разрешение, размер изображения

Для того чтобы установить единую меру дискретизации, было разработано понятие разрешения (resolution) , которое однозначно связывает размер элемента дискретизации со стандартными единицами измерения, принятыми в науке и технике.

Разрешение тесно связано с другим параметром изображения - размером. Растровая графика измеряет изображения в пикселях (иногда говорят в пикселах). Термин пиксел (pixel ) появился в результате слияния слов "picture" и "element". При этом устанавливается прямая связь размера и разрешения. Разрешение оригинала представляется в точках на дюйм (dots per inch) – dpi . Чем выше требования к качеству изображения, тем выше должно быть разрешение. Для печатных устройств важен другой параметр разрешения lpi (line per inch) – число линий на один дюйм, но об этом несколько позднее.

Разрешение включает в себя два компонента - пространственное разрешение и яркостное разрешение.

Пространственное разрешение (или просто разрешение) - характеризует количество пикселей в изображении. Чем больше пикселей содержит изображение, тем выше его качество (хотя существуют некоторые ограничения, связанные с размером изображения).

Яркостное разрешение (глубина цвета ) определяет число уровней яркости, которые может принимать каждый отдельный пиксель. Чем оно выше, тем больше оттенков цвета будет содержать изображение. Для черно-белых изображений поддерживается глубина цвета в 8 бит, т.е. 256 градаций яркости (последние версии растровых редакторов поддерживают 16 бит - 65536). Для цветных изображений используется кодировка цвета 24 (наиболее распространенная - 16,7 млн. оттенков), 32, 48 и 96 битами. Последний тип кодировки изображения с 32-битными каналами называются также изображениями с расширенным динамическим диапазоном (HDR-изображениями ). HDR-изображения открывают целый мир новых возможностей, так как позволяют охватить весь динамический диапазон видимого света. Поскольку в HDR-изображении пропорционально представлены и сохранены все значения светимости реального мира, настройка экспозиции HDR-изображения происходит точно так же, как настройка экспозиции при съемке кадра в реальном мире. Эта возможность позволяет создавать реалистичные размытия и другие эффекты освещения реального мира. В настоящее время HDR- изображения чаще всего используются при съемках кинофильмов, при создании специальных эффектов, в трехмерной графике и иногда в фотографиях высокого класса.

Но не все редакторы растровой графики способны работать с HDR-изображениями. Даже в Photoshop имеются многочисленные ограничения.

Таким образом, разрешение - это совокупность размера изображения и глубины цвета.

Разрешение представляет собой достаточно универсальное понятие, которое применяется в разных областях, имеющих дело с изображениями (например, в телевидении, полиграфии и компьютерной графике), оно, хотя и имеет разные названия и разные формы единиц измерения, сохраняет единый смысл: количество дискретных элементов, приходящихся на стандартную единицу длины (фактически - на единицу площади).

При этом стоит обратить особое внимание на качественное содержание этого понятия, а именно уяснить, что качество, которое обеспечивается разрешением, необходимо понимать в узком метрологическом смысле: правильное разрешение должно всего лишь создать условия для передачи минимальных элементов изображения. Отсюда возникает задача определения оптимального соотношения между размером минимального элемента оригинала и размером пиксела (критерий Котельникова - Найквиста). Неправильный выбор разрешения чреват многочисленными погрешностями, в частности пренебрежение критерием создает условия для появления муара.

Конечно, стоит задаться таким вопросом: обеспечиваются ли в рассмотренном примере одинаковые размеры исходного изображения и конечного изображения? Естественно, при обязательном условии - равенстве элементов дискретизации. Предлагается выполнить эскиз простой мозаики, из которой следует, что нужно взять 20 элементов, 4 из которых будут черными, а остальные 16 - белыми, а затем сложить из них изображение в форме квадрата. Совершенно очевидно, что эту задачу можно выполнить с помощью элементов различного размера и получить изображения разного размера, никак не исказив исходный эскиз.

Исходя из этой схемы, становится очевидным, что в битовой карте отсутствует указание на реальный размер элемента. В таком случае одна и та же битовая карта может быть визуализирована по-разному, если элементы, из которых строится оттиск, имеют различные размеры, рисунок 17.

В данном случае совершенно очевидно, что причиной неоднозначной визуализации является указание только количества элементов и отсутствие каких бы то ни было указаний на размер элементов. Но т.к. разговор идет о соответствии размеров дискретных элементов в битовой карте и в устройстве визуализации, следует "привязать" их к единой шкале.

Рисунок 17

Вот это соотношение и реализуется в известном понятии разрешение . В качестве элемента дисретизации как раз и был выбран пиксел.

Главным отличительным свойством пиксела является его однородность и неделимость.

Единица измерения разрешения ppi - это количество пикселов в каждом дюйме изображения (point per inch).

Таким образом, введение абсолютной единицы измерения призвано обеспечивать идентичность размеров оригинала и оттиска.

Для того чтобы разобраться в том, что такое правильное разрешение, стоит вместо идеального оригинала (черного квадрата), которым мы до сих пор оперировали, выбрать изображение немного сложнее – черный треугольник, рисунок 18.

Рисунок 18

Особенность этого изображения состоит в несовпадении сетки дискретизации и границы между белыми и черными областями. Если мы по-прежнему станем использовать разрешение, ранее выбранное нами, например 1 ppi, результат визуализации оцифрованного изображения приобретет следующий вид, рисунок 19.

Рисунок 19

Оказывается, что такое значение разрешения, которое было принято случайно, явно не обеспечивает правильного отображения. Получилось изображение, во-первых, имеющее "ступеньки", отсутствовавшие в исходном изображении, а во-вторых, оно мало похоже на исходный оригинал. Разумеется, надо искать пути для исправления такого положения.

Если требуется более точно передавать в цифровом дискретизированном изображении такие наклонные элементы, необходимо уменьшить размер элементов дискретизации (пикселов), а для этого, соответственно, придется увеличивать разрешение. Например, размер пикселов можно уменьшить вдвое и получить разрешение 2 ppi. Обратите внимание, что в этом случае в визуализированном изображении ступеньки станут в два раза меньше, рисунок 20.

Рисунок 20

Таким образом, увеличивая разрешение (и, соответственно, уменьшая фактический размер пикселов), мы, в конце концов, сможем достичь такого уровня, когда таких ступенек не будет вовсе. Вполне можно достигнуть уровня, при котором эти элементы станут неразличимыми для восприятия (как, например, на фотографии).

Действительно, при определенных значениях разрешения дискретная структура неразличима (или почти неразличима) глазом. На этом построены все устройства, работающие с изображением (кино, телевидение, фотография и полиграфия).

Но на самом деле, достаточно "вооружить" глаз каким-нибудь оптическим прибором, и можно заметить, что всюду присутствуют дискретные элементы, даже если мы рассматриваем фотографию и нам кажется, что изображение и тоновая шкала непрерывны.

Для сведения - дискретная структура фотоизображений задается уже в процессе создания пленки или фотобумаги (ни фотоаппараты, ни увеличители не влияют на это), она только слегка изменяется в процессе экспонирования и проявки. Состав, который наносится на пленку или на бумагу, содержит галогениды серебра в виде так называемых "зерен". Их размер, изменяемый в процессе обработки, как раз и определяет элементы изображения. Исходя из этого, пленки бывают крупнозернистыми или мелкозернистыми.

Особенностью дискретной структуры фотоизображений является то, что элементы дискретизации неоднородны. В процессе экспонирования и обработки отдельные зерна сливаются, создавая конгломераты различных размеров, в том числе даже видимые невооруженным глазом (особенно это заметно при очень сильном увеличении фрагмента фотографии).

Структура светочувствительного слоя пленки или фотобумаги предполагает, что дискретные элементы фотоизображений неоднородны, а это идеальная ситуация для адаптивного отображения тоновой картины. Дискретные элементы цифровых изображений, которые принудительно создаются, имеют принципиально (в настоящий исторический период) однородный характер.

Для того чтобы получить, в конце концов, адекватный оригиналу оттиск, пользователь должен определить соответствующее этому разрешение.

Рассмотрим разрешение не с точки зрения элемента дискретизации, например пиксела как такового (его объективного размера), а с точки зрения исходного изображения, у которого тоже могут быть некоторые минимальные элементы (линии чертежа). Эти минимальные элементы, разумеется, требуют сохранения в процессе репродуцирования и отображения в конечном цифровом документе. Успешное отображение таких минимальных элементов - одно из безусловных требований сканирования изображений.

Отсюда возникает задача сформулировать определенную зависимость между размером минимального элемента оригинала и разрешением (то есть фактическим размером пиксела), но прежде необходимо понять смысл качества цифровых изображений.

Основное правило оценки качества в метрологии - Измеряй микрометром. Отмечай мелом. Отрубай топором. Правило точности Рэя.

Если мы используем разрешение 1 ppi, как в первом случае, или, скажем, 400 ppi, то понятно, что этим фактически определяется размер пиксела, т. е. минимальной ячейки пиксельной сетки, которая накладывается на исходное изображение. В принципе, если создана битовая карта, то в соответствии с расположением элементов в этой битовой карте изображение можно построить с помощью элементов любого размера, т. е. нам и не нужно знать размер пикселов визуализации.

Это означает, что зачастую пользователь не в состоянии изменить условия вывода информации. В самом деле, работа с пиксельным изображением требует учета параметров на всех этапах: от оригинала до оттиска.

Знать размер минимальных элементов важно потому что, помимо выхода (этапа визуализации), существуют и проблемы входа (соответствия битовой карты цифрового изображения исходному оригиналу). Так, например, при фотосъемке точное знание светочувствительности необходимо для выбора оптимальных условий экспонирования в процессе съемки или печати.

При дискретизации штриховых изображений - аналогичный случай: в оригинале существуют линии, но коль скоро условия регистрации не соответствуют требуемым, то в этом случае они не могут быть зафиксированы. На таких условиях строятся многочисленные приемы художественной фотографии, а также компьютерной графики.

Выбор разрешения определяет взаимосвязь между оригиналом и цифровым изображением, а именно, нужно таким образом определить разрешение, чтобы цифровое изображение соответствовало исходному оригиналу.

Впрочем, не всегда можно на самом деле получить качественное изображение на оттиске, даже имея качественное битовое изображение. Надо понимать, что проблем между входом и выходом изображения очень много.

С точки зрения метрологии качество понимается как соответствие результата заранее заданному уровню. Так что, если в оригинале имеется минимальная линия определенной толщины, то метрологически качественным будет такое цифровое изображение, которое достоверно отображает эту линию.

Разумеется, если известно значение толщины минимального элемента оригинала, можно рассчитать соответствующее разрешение (создать соответствующую сетку дискретизации) и, тем самым, определить требуемый размер пиксела. Также логично предположить, что если мы так рассчитаем разрешение, что размер стороны пиксела будет равен толщине линии, удастся однозначно оцифровать такой чертеж. Таким образом, если высота пиксела оказывается равной (или очень близкой, т. е. в пределах погрешности) минимальному элементу изображения, то мы можем передать такую линию вполне достоверно, рисунок 21а. Но так ли это?

Рисунок 21

Дело в том, что если посмотреть внимательнее, данный случай напоминает идеальную ситуацию, какая имела место при оцифровке квадрата.

На самом деле сетка дискретизации (пиксельная сетка) вряд ли так четко совпадет с линиями оригинала. А в таком случае возможны два основных варианта (по-прежнему при равенстве высоты пиксела и толщины линии). Сетка дискретизации может быть слегка сдвинута по отношению к исходной линии вверх или вниз, рисунок 21б. По правилам квантования (округления), о которых будет сказано позже, получается следующий результат, рисунок 22а - линия, создаваемая пикселами в битовой карте, "съезжает", соответственно, вверх или вниз на целый пиксел.

Сетка дискретизации проходит строго по середине исходной линии, рисунок 21в. Если мы предположили, что линия сетки дискретизации проходит по краям линии, то и такой вариант возможен. По тем же правилам получается следующий результат, рисунок 22б - линия, создаваемая пикселами в битовой карте, увеличивается по толщине вдвое.

Рисунок 22

Приведенные выше результаты убеждают в том, что идеальный вариант (равенство размера сетки дискретизации толщине линии) далеко не идеален, как это может показаться на первый взгляд. В обоих случаях наблюдаются достаточно серьезные погрешности, которые препятствуют обеспечению достоверного качества исходного изображения.

Следовательно, необходимо внести коррективы в выбор разрешения, и единственный путь - увеличить разрешение. Но тут возникает естественный вопрос - насколько требуется увеличить разрешение?

Необходимо определить соотношение между размером минимального элемента оригинала и размером пиксела - обеспечивать требуемое качество изображения и не увеличивать чрезмерно объем документа.

Исследованиями было установлено, что частота дискретизации должна быть, по крайней мере, вдвое выше максимальной частоты передаваемого сигнала.

Под частотой дискретизации понимается величина, обратная разрешению, т. е. фактически - это высота пиксела. Следовательно, частота дискретизации должна быть, по крайней мере, вдвое выше максимальной частоты передаваемого сигнала, подвергаемого дискретизации.

Такая зависимость известна в западных странах как критерий Найквиста, а в России - как теорема Котельникова.

Предположим, что толщина минимальной линии, например на чертеже, составляет 2,54 мм (0,1 дюйма). Исходя из критерия Котельникова - Найквиста, высота элемента дискретизации (пиксела) должна быть в два раза меньше, следовательно,

2,54 (мм) : 2 = 1,27 (мм).

Таким образом, мы получили размер одной ячейки дискретизации (пиксела), а для того чтобы получить значение разрешения, необходимо определить, сколько таких ячеек попадает в дюйм (равный 25,4 мм) в соответствии с определением понятия разрешения, отсюда

25,4 (мм) : 1,27 (мм) = 20 (пикселов).

Поскольку в каждом дюйме размещается 20 пикселов, можно утверждать, что для достоверной оцифровки штриха толщиной 2,54 мм достаточно разрешения, равного всего 20 ppi.

Суммируя примеры, можно вывести общую формулу, позволяющую "прикинуть" требуемое разрешение, если мы обозначим толщину минимального штриха буквой L (толщина штриха измеряется в миллиметрах), а разрешение - буквой R. Итак,

R = 25,4 (мм) : (L: 2)

Если толщина штриха измеряется в дюймах, формула будет еще проще:

R = 1: (L: 2) = 2: L

Задача расчета достоверной передачи минимальных элементов штрихового изображения важна еще и по другой причине.

Муар – различимая глазом растровая структура изображения.

Механизм возникновения муара состоит во взаимодействии двух сеток, разрешение которых близко друг другу. Периодическая структура изображения (минимальные периодические линии оригинала) лежит в граничной зоне (близка разрешению) дискретизации.

Муар - это одна из многих проблем, неизбежно сопровождающих процесс растеризации. Впрочем, муар - коварное явление и возникает в самых неожиданных случаях, например в результате операции изменения разрешения в сторону уменьшения. Это связано с тем, что растровые образцы именно таким образом реагируют на выбрасывание элементов изображения.

Вспомним, что после того как синусоида сигнала была разделена на дискретные элементы, выполнялась необходимая операция усреднения сигнала в пределах каждого участка. Естественно, что и в каждой ячейке сетки дискретизации графического изображения требуется получить усредненные значения, т. е. всего один конкретный уровень квантования в каждой ячейке. С таким значением уже можно сопоставить конкретное целое число - цифровой код. Осталось только договориться о критерии, который бы разделял ячейки со смешанным цветом на белые и черные.

Для этой цели, как и ранее в дискретизации, необходимо ввести некий жесткий критерий, в соответствии с которым можно усреднять значения и, следовательно, однозначно разделять на уровни квантования. Если у дискретного элемента (пиксела) черный цвет занимает половину площади или больше, принято считать, что и вся ячейка относится к черному цвету. Если у дискретного элемента (пиксела) черный цвет занимает меньше половины площади, то такая ячейка относится целиком к белому цвету. Это и есть требуемый критерий квантования для черно-белого шрифтового изображения.

Разрешение - величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины). Термин обычно применяется к изображениям в цифровой форме, хотя его можно применить, например, для описания уровня грануляции фотоплёнки, фотобумаги или иного физического носителя. Более высокое разрешение (больше элементов) типично обеспечивает более точные представления оригинала. Другой важной характеристикой изображения является разрядность цветовой палитры.

Как правило, разрешение в разных направлениях одинаково, что даёт пиксел квадратной формы. Но это не обязательно - например, горизонтальное разрешение может отличаться от вертикального, при этом элемент изображения (пиксел) будет не квадратным, а прямоугольным. Более того, возможна не квадратная решётка элементов изображения, а например шестигранная (гексагональная) или вовсе не регулярная (стохастическая), что не мешает говорить о максимальном количестве точек или управляемых элементов изображения на единицу длины или площади.

Разрешение изображения

Растровая графика

Ошибочно под разрешением понимают размеры фотографии, экрана монитора или изображения в пикселах[источник не указан 956 дней]. Размеры растровых изображений выражают в виде количества пикселов по горизонтали и вертикали, например: 1600×1200. В данном случае это означает, что ширина изображения составляет 1600, а высота - 1200 точек (такое изображение состоит из 1 920 000 точек, то есть примерно 2 мегапиксела). Количество точек по горизонтали и вертикали может быть разным для разных изображений. Изображения, как правило, хранятся в виде, максимально пригодном для отображения экранами мониторов - они хранят цвет пикселов в виде требуемой яркости свечения излучающих элементов экрана (RGB), и рассчитаны на то, что пикселы изображения будут отображаться пикселами экрана один к одному. Это обеспечивает простоту вывода изображения на экран.

При выводе изображения на поверхность экрана или бумаги, оно занимает прямоугольник определённого размера. Для оптимального размещения изображения на экране необходимо согласовывать количество точек в изображении, пропорции сторон изображения с соответствующими параметрами устройства отображения. Если пиксели изображения выводятся пикселами устройства вывода один к одному, размер будет определяться только разрешением устройства вывода. Соответственно, чем выше разрешение экрана, тем больше точек отображается на той же площади и тем менее зернистой и более качественной будет ваша картинка. При большом количестве точек, размещённом на маленькой площади, глаз не замечает мозаичности рисунка. Справедливо и обратное: малое разрешение позволит глазу заметить растр изображения («ступеньки»). Высокое разрешение изображения при малом размере плоскости отображающего устройства не позволит вывести на него всё изображение, либо при выводе изображение будет «подгоняться», например для каждого отображаемого пиксела будут усредняться цвета попадающей в него части исходного изображения. При необходимости крупно отобразить изображение небольшого размера на устройстве с высоким разрешением приходится вычислять цвета промежуточных пикселей. Изменение фактического количества пикселей изображения называется передискретизация, и для неё существуют целый ряд алгоритмов разной сложности.

При выводе на бумагу такие изображения преобразуются под физические возможности принтера: проводится цветоделение, масштабирование и растеризация для вывода изображения красками фиксированного цвета и яркости, доступными принтеру. Принтеру для отображения цвета разной яркости и оттенка приходится группировать несколько меньшего размера точек доступного ему цвета, например один серый пиксел такого исходного изображения, как правило, на печати представляется несколькими маленькими чёрными точками на белом фоне бумаги. В случаях, не касающихся профессиональной допечатной подготовки, этот процесс производится с минимальным вмешательством пользователя, в соответствии с настройками принтера и желаемым размером отпечатка. Изображения в форматах, получаемых при допечатной подготовке и рассчитанные на непосредственный вывод печатающим устройством, для полноценного отображения на экране нуждаются в обратном преобразовании.

Большинство форматов графических файлов позволяют хранить данные о желаемом масштабе при выводе на печать, то есть о желаемом разрешении в dpi (англ. dots per inch - эта величина говорит о количестве точек на единицу длины: например 300 dpi означает 300 точек на один дюйм). Это исключительно справочная величина. Как правило, для получения распечатка фотографии, который предназначен для рассматривания с расстояния порядка 40 - 45 сантиметров, достаточно разрешения 300 dpi. Исходя из этого можно рассчитать, какого размера отпечаток можно получить из имеющегося изображения или какого размера изображение надо получить, чтоб затем сделать отпечаток нужного размера.

Например, надо напечатать с разрешением в 300 dpi изображение на бумаге размером 10×10 см (3,9×3,9 дюймов). Теперь, умножив 3,9 на 300 и получаем размер фотографии в пикселах: 1170×1170. Таким образом, для печати изображения приемлемого качества размером 10×10 см, размер исходного изображения должен быть не менее 1170×1170 пикселей.

Для обозначения разрешающей способности различных процессов преобразования изображений (сканирование, печать, растеризация и т. п.) используют следующие термины:

dpi (англ. dots per inch) - количество точек на дюйм.

ppi (англ. pixels per inch) - количество пикселей на дюйм.

lpi (англ. lines per inch) - количество линий на дюйм, разрешающая способность графических планшетов (дигитайзеров).

spi (англ. samples per inch) - количество сэмплов на дюйм; плотность дискретизации (англ. sampling density), в том числе разрешение сканеров изображений.

По историческим причинам величины стараются приводить к dpi, хотя с практической точки зрения ppi более однозначно характеризует для потребителя процессы печати или сканирования. Измерение в lpi широко используется в полиграфии. Измерение в spi используется для описания внутренних процессов устройств или алгоритмов.

Значение разрядности цвета

Для создания реалистичного изображения средствами компьютерной графики цвет иногда оказывается важнее (высокого) разрешения, поскольку человеческий глаз воспринимает картинку с большим количеством цветовых оттенков как более правдоподобную. Вид изображения на экране напрямую зависит от выбранного видеорежима, основу которого составляют три характеристики: кроме собственно разрешения (кол-ва точек по горизонтали и вертикали), отличаются частота обновления изображения (Гц) и количество отображаемых цветов (цветорежим или разрядность цвета)). Последний параметр (характеристику) часто также называют разрешение цвета, или частота разрешения (частотность или разрядность гаммы) цвета.

Разница между 24- и 32-разрядным цветом на глаз отсутствует, потому как в 32-разрядном представлении 8 разрядов просто не используются, облегчая адресацию пикселов, но увеличивая занимаемую изображением память, а 16-разрядный цвет заметно «грубее». У профессиональных цифровых фотокамер у сканеров (например, 48 или 51 бит на пиксел) более высокая разрядность оказывается полезна при последующей обработке фотографий: цветокоррекции, ретушировании и т. п.

Векторная графика

Для векторных изображений, в силу принципа построения изображения, понятие разрешения неприменимо.

Разрешение устройства

Разрешение устройства (inherent resolution) описывает максимальное разрешение изображения, получаемого с помощью устройства ввода или вывода.

Разрешение принтера, обычно указывают в dpi.

Разрешение сканера изображений указывается в ppi (количество пикселей на один дюйм), а не в dpi.

Разрешением экрана монитора обычно называют размеры получаемого на экране изображения в пикселах: 800×600, 1024×768, 1280×1024, подразумевая разрешение относительно физических размеров экрана, а не эталонной единицы измерения длины, такой как 1 дюйм. Для получения разрешения в единицах ppi данное количество пикселов необходимо поделить на физические размеры экрана, выраженные в дюймах. Двумя другими важными геометрическими характеристиками экрана являются размер его диагонали и соотношение сторон.

Разрешение матрицы цифровой фотокамеры, так же как экрана монитора, характеризуется размером (в пикселах) получаемых изображений, но в отличие от экранов, популярным стало использование не двух чисел, а округлённого суммарного количества пикселов, выражаемое в мегапикселах. Говорить о фактическом разрешении матрицы можно лишь учитывая её размеры. Говорить о фактическом разрешении получаемых изображений можно либо в отношении устройство вывода - экранов и принтеров, либо в отношении сфотографированных предметов, с учётом их перспективных искажений при съёмке и характеристик объектива.

Растровая графика

Средства для работы с растровой графикой

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

разрешение оригинала;

разрешение экранного изображения;

разрешение печатного изображения.

Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм и зависит от требований к качеству изображения и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешения оригинала и масштаба отображения.

Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1200, 1920x1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22-0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемое™. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра.

Такой метод называют растрированием с амплитудной модуляцией (AM).

Существует и метод растрирования с частотной модуляцией (ЧМ), когда интенсивность тона регулируется изменением расстояния между соседними точками одинакового размера. Таким образом, при частотно-модулированном растрировании в ячейках растра с разной интенсивностью тона находится разное число точек.

Изображения, растрированные ЧМ-методом, выглядят более качественно, так как размер точек минимален и во всяком случае существенно меньше, чем средний размер точки при AM-растрировании. Еще более повышает качество изображения разновидность ЧМ-метода, называемая стохастическим растрированием. В этом случае рассчитывается число точек, необходимое для отображения требуемой интенсивности тона в ячейке растра. Затем эти точки располагаются внутри ячейки на расстояниях, вычисленных квазислучайным методом (на самом деле используется специальный математический алгоритм). То есть регулярная структура растра внутри ячейки, как и на изображении в целом, вообще отсутствует. Поэтому при стохастическом ЧМ-растрировании теряет смысл понятие линиатуры растра, имеет значение лишь разрешающая способность устройства вывода. Такой способ требует больших затрат вычислительных ресурсов и высокой точности полиграфического оборудования; он применяется в основном для художественных работ, при печати с числом красок, превышающим четыре.

Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256 = 16 х 16 точек.

Между разрешением оригинала, частотой растра и градацией уровней существует зависимость.

При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов. Для лазерных принтеров рекомендуемая линиатура составляет 65-100 Ipi, для газетного производства -- 65-85 Ipi, для книжно-журнального -- 85-133 Ipi, для художественных и рекламных работ -- 133-300 Ipi.

При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 Ipi уже недостаточно разрешения 16x150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра. Таким образом, коэффициент, учитывающий поправку на угол поворота растра, для цветных изображений составляет 1,06.

Динамический диапазон. Качество воспроизведения тоновых изображений принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания т (для оригиналов, рассматриваемых «на просвет», например слайдов) или коэффициенту отражения р (для прочих оригиналов, например полиграфических отпечатков)

Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от 0 до 4. Для поверхностей, отражающих свет, значение динамического диапазона составляет от 0 до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия.

Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего промотра (стандартный размер 10x15 см, оцифрованный с разрешением 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.

Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию (рис. 15.3). Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.

Программные средства создания растровых изображений

Среди программ, предназначенных для создания компьютерной двумерной живописи, самыми популярными считаются Painter компании Fractal Design, Freehand компании Macromedia, и Fauve Matisse. Пакет Painter обладает достаточно широким спектром средств рисования и работы с цветом. В частности, он моделирует различные инструменты (кисти, карандаш, перо, уголь, аэрограф и др.), позволяет имитировать материалы (акварель, масло, тушь), а также добиться эффекта натуральной среды. В свою очередь, последние версии программы FreeHand обладают богатыми средствами редактирования изображений и текста, содержат библиотеку спецэффектов и набор инструментов для работы с цветом, в том числе средства многоцветной градиентной заливки.

Среди программ для создания изображений на платформе Macintosh стоит отметить пакет для редактирования растровой живописи и изображений PixelPaint Pro компании Pixel Resources.

Среди программ компьютерной живописи для графических станций Silicon Graphics (SGI) особое место занимает пакет StudioPaint 3D компании Alias Wavefront, который позволяет рисовать различными инструментами («кистями») в режиме реального времени прямо на трехмерных моделях. Пакет работает с неограниченным количеством слоев изображения и предоставляет 30 уровней отмены предыдущего действия (undo), включает операции цветокоррекции и «сплайновые кисти», «мазок» которых можно редактировать по точкам как сплайновую кривую. StudioPaint 3D поддерживает планшет с чувствительным пером, что дает возможность художнику сделать традиционный эскиз от руки, а затем позволяет перенести рисунок в трехмерные пакеты для моделирования или анимации и построить по эскизу трехмерную модель.

Аппаратные средства получения растровых изображений

К аппаратным средствам получения цифровых растровых оригиналов в основном относятся сканеры и цифровые фотокамеры. Другие устройства, например цифровые видеокамеры, адаптеры захвата телевизионных кадров, в компьютерной графике играют чаще вспомогательную роль. Для создания изображений «от руки» предназначены графические планшеты, на которых рисуют специальным электронным пером.

Сканеры по способу восприятия изображения делятся на две группы: устройства с электронными фотоумножителями (ФЭУ) и устройства на приборах с зарядовой связью (ПЗС, английская аббревиатура CCD). Сканеры с фотоумножителями называют барабанными -- внутри аппарата помещен прозрачный барабан, на который крепится оригинал (отражающий или просветный). Затем барабан начинает вращаться с большой скоростью. Сканирующая головка имеет мощный источник света с фокусированным лучом и ФЭУ, которые движутся вдоль продольной оси барабана. Отраженный или проходящий световой поток попадает на ФЭУ (обычно имеется по одному ФЭУ на каждый канал) через прецизионную зеркальную систему развертки. Накопленный ФЭУ заряд преобразуется в цифровое значение аналого-цифровым преобразователем высокой разрядности. Так как процесс до этого момента по сути аналоговый, удается добиться очень высоких значений динамического диапазона. То есть, оригинал правильно оцифровывается и в светлых, и в темных участках. Выходное разрешение оригинала достигает 5000-6000 точек на дюйм. За совершенное качество приходится платить -- барабанные сканеры чрезвычайно дорогостоящи и требовательны к условиям эксплуатации.

Прочие сканеры относятся к устройствам на ПЗС. В отличие от ФЭУ, приборы с зарядовой связью представляют собой фотоприемник, выполненный на кремниевых элементах, объединенных в линейку. Каждый светочувствительный элемент обладает способностью накапливать заряды пропорционально числу попавших на него фотонов. За время экспозиции возникает матрица зарядов, пропорциональных яркости исходного изображения. По вертикали развертка осуществляется передвижением либо всей линейки ПЗС с помощью шагового электродвигателя, либо перемещением оригинала. Разрешающая способность определяется числом оптических элементов на единицу длины. В устройствах бытового класса это 300-600 элементов на дюйм, профессионального -- 1200-3000. Программная интерполяция оптического разрешения никакого реального повышения качества оцифровки не дает. Динамический диапазон устройств на ПЗС ниже, чем у ФЭУ, потому что кремниевые элементы имеют худшее соотношение сигнал/шум.

В высокоточных сканерах на ПЗС дополнительно применяются: система зеркальной развертки по обоим координатам с компенсацией искажений по краям оригинала, несколько линеек ПЗС, стабильные по цветовой температуре осветительные лампы, многоразрядные цифро-аналоговые преобразователи, элементы, выполненные на СМ05-пластинах. Такие устройства по качеству оцифровки приближаются к барабанным сканерам, а по стоимости значительно доступнее.

Конструктивно барабанные сканеры выполняют с вертикальным или горизонтальным барабаном, съемным или несъемным. Сканеры на ПЗС бывают листовые, планшетные, проекционные, ручные и так называемые слайдовые (для сканирования оригиналов «на просвет»).

Для целей компьютерной графики важно не столько разрешение сканера (оно может не превышать 300 dpi), сколько хороший динамический диапазон. Для сканирования в отраженном свете желательно иметь динамический диапазон не ниже 2, «на просвет» -- не ниже 3,5.

Основой цифровых фотокамер служит матрица ПЗС, состоящая из двумерного массива элементов. Для целей электронной публикации и непрофессионального применения достаточное число элементов на матрице около 1,5 миллионов. Полупрофессиональные камеры должны иметь разрешение матрицы не ниже 2 миллионов элементов, профессиональные аппараты -- 2,5-3 миллиона. Оцифрованные с их помощью изображения можно использовать для подготовки полиграфических публикаций. Оптическая система цифровых камер профессионального класса должна обеспечивать разрешение не ниже 110-120 пар линий на дюйм.

Графические планшеты представляют собой координатную двумерную электронную сетку, каждый элемент которой способен воспринимать и передавать ряд сигналов от электронного пера. К таковым сигналам относятся: координаты точки контакта пера с планшетом, сила нажима, угол наклона, скорость прохода (то есть время экспозиции) и ряд других. Затем за счет программного преобразования полученные данные отображаются на экране в виде линий, мазков и других художественных средств создания изображений. Обладая достаточным навыком работы с графическим планшетом, удается очень точно имитировать различную живописную технику--письмо маслом, рисунок углем, аэрографом, карандашом и т. д.

Растровым называется изображение состоящее из массива точек - пикселей. Пиксел - это элементарный, то есть наименьший и уже не делимый элемент двухмерного цифрового изображения прямоугольной или круглой формы определенного цвета. В то же время, пиксел - это и физический элемент матрицы устройств вывода - дисплеев. Например, на мониторе плазменной панели пиксел может быть восьмиугольным.

Таким образом, с помощью таких цветных точек-пикселей можно создать картинку, практически, любой сложности. В растровом формате представлены изображения на большинстве устройств вывода графики: мониторах, сканерах, принтерах, сотовых телефонах, цифровых фотокамерах.

Размер растрового изображения - это ширина и высота рисунка в пикселах. Например, если мы правым кликом по картинке на этой странице откроем контекстное меню и пройдем в "Свойства изображения...":

то увидим его габариты в пикселах, где 200 - его ширина, а 150 - высота:

Количество пикселей на единицу длины - это и есть разрешение изображения. Чем выше разрешение, тем больше пикселей расположено в дюйме. Тем более мелкими они будут. И тем более четкими будут детали изображения, более точным будет отображение оригинала. Разрешение измеряется в dpi (dots per inch) - количестве точек на дюйм.

Для распечатанной фотографии обычного качества достаточно разрешения в 300 dpi. Исходя из этого легко посчитать размер цифрового изображения в пикселах для определенного формата фотобумаги. Например, чтобы вписать фотографию на формат А4 (210х297) мм или 8х11 дюймов, умножаем 8 на 300 и 11 на 300. И получаем 2400х3300px. Таким должен быть минимальный размер картинки для распечатки на А4. Если размеры будут меньше, то изображение будет нечетким, расплывчатым.

Перейдем, теперь, к разрешению монитора. Разрешение определяет четкость картинки и текста на экране. При высоком разрешении объекты становятся меньше, смотрятся четче и их на экране больше. При низком разрешении, наоборот, объекты выглядят крупнее и на экране их меньше.

Мониторы на основе электронно-лучевой трубки (ЭЛТ-мониторы), которые сегодня уже почти нигде не применяются могут эффективно работать в различных разрешениях. Жидкокристаллические дисплеи и мониторы десктопов и ноутбуков на их основе лучше всего использовать на собственном разрешении. Собственное - это разрешение для которого разработан монитор исходя из его размеров.

Мониторы по соотношению сторон бывают стандартными 4:3 или широкоформатными с 16:9, или 16:10. Это значит, что на четыре единицы ширины экрана приходится три единицы в высоту. Или 16 единиц по горизонтали при девяти по вертикали.

У ЖК-мониторов по сравнению с ЭЛТ есть ряд преимуществ. Это компактность и малый вес. Отсутствие мерцания связанное с частотой смены кадров. Отсутствие геометрических искажений изображения. Высокая четкость картинки - следствие большей разрешающей способности. ЖК-мониторы не излучают электромагнитных волн и поэтому безопаснее. Современные широкоформатные мониторы выпускаются даже со встроенной аудиосистемой.

Правым кликом в любом месте рабочего стола откроем контекстное меню и выберем строку "Разрешение экрана". Откроется окно "Настройки экрана". Здесь развернем шкалу "Разрешение":

1920х1080px и есть собственное разрешение данного 24-дюймового дисплея. 24 дюйма - это его диагональ. Чтобы узнать dpi, нужно 1920 пикселей поделить на ширину и 1080 пикселей на высоту экрана в дюймах. И получаем 92dpi. Для сравнения: у 15-дюймового ЭЛТ-монитора оптимальным считается разрешение 800х600px, что составляет 67dpi.

Отсюда - практические выводы. Когда мы подбираем красивые обои на рабочий стол, размер картинки в пикселах не должен быть меньше установленного разрешения монитора. Например, для представленного выше 24-дюймового монитора габариты рисунка должны превышать 1920px по горизонтали и 1080px по вертикали. Или быть точно такого же размера. Изображение меньшего размера будет выглядеть размытым и абсолютно неприемлимо.

Обои и различные изображения можно подобрать на специализированном поисковике картинок. Активная ссылка есть на странице поисковики интернета .

Недостатком простых растровых картинок является большой объем файла изображения. Поэтому растровые фотографии и рисунки сохраняются в сжатом виде в различных графических форматах. Выбор формата зависит от типа изображения и способа его использования. Оптимальным для размещения полноцветных фотографий в интернете является формат jpeg, например. Однако, jpeg плохо подходит для чертежей, символьных и текстовых структур. Такую графику лучше сохранять в форматах, которые сжимают без потерь, как png или gif.

Еще много можно интересного написать о графических форматах.

И, как самому легко сделать gif-анимацию –«гифку» читаем в статье